Slow Ring-inversion of the Nine-membered Lactam in 4-Azabicyclo[5,2,2]undeca-8,10-dien-3-one Systems

By Keiji Hemmi, Hideo Nakai, Shunji Naruto, and Osamu Yonemitsu,* Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan

The kinetic parameters for hindered inversion of the nine-membered lactam ring in 4-azabicyclo[5,2,2]undeca-8,10-dien-3-one systems have been determined by n.m.r. total line-shape analysis. These data may provide an example of hindered ring-inversion of a medium-sized ring caused by hindered rotation of the amide group.

SINCE the initial kinetic studies of hindered internal rotation in amides by high-resolution n.m.r. spectroscopy,¹ a number of reports for various amides have

¹ G. S. Gutowsky and C. H. Holm, J. Chem. Phys., 1956, 25, 1228.

been published,² and recently the inversion in amines or in amides has received considerable attention.^{2,3}

In the course of our extensive studies on the photochemistry of pharmacodynamic amines, a novel bicyclic

³ W. B. Jenning and R. Spratt, *Chem. Comm.*, 1971, 54; D. L. Griffith, B. L. Olson, and J. D. Roberts, *J. Amer. Chem. Soc.*, 1971, **93**, 1648.

² For reviews see W. E. Stewart and T. H. Siddall, tert., Chem. Revs., 1970, **70**, 517; H. Kessler, Angew. Chem. Internat. Edn., 1970, **9**, 219.

compound, 7-hydroxy-1,9,10-trimethoxy-4-azabicyclo-[5,2,2]undeca-8,10-dien-3-one (I) was synthesized.⁴ In

$$\begin{array}{c} \underbrace{\text{MeO}}_{\substack{\textbf{R}^{3} \\ \textbf{R}^{3} \\ \textbf{R}^{4} \\ \textbf{R}^{4} \\ \textbf{R}^{4} \\ \textbf{R}^{4} \\ \textbf{R}^{4} \\ \textbf{R}^{4} \\ \textbf{R}^{2} \\ \textbf{R}^{3} \\ \textbf{R}^{3} \\ \textbf{R}^{3} \\ \textbf{R}^{4} \\ \textbf{R}^{4} \\ \textbf{R}^{4} \\ \textbf{R}^{4} \\ \textbf{R}^{4} \\ \textbf{R}^{4} \\ \textbf{R}^{2} \\ \textbf{R}^{3} \\ \textbf{R}^{3} \\ \textbf{R}^{3} \\ \textbf{R}^{4} \\ \textbf{R}^{2} \\ \textbf{R}^{3} \\ \textbf{R}^{4} \\ \textbf{R}^{2} \\ \textbf{R}^{4} \\ \textbf$$

its n.m.r. spectrum in D₂O, the two methoxy-groups at C-9 and -10 appear at δ 3.55 and 3.73 p.p.m. as distinct singlets with equal intensity. The methoxy-group at C-9 in the analogous compound, 7-hydroxy-1,9-dimethoxy-4-azabicyclo[5,2,2]undeca-8,10-dien-3-one (II),⁵ splits into two peaks at δ 3.56 and 3.74 p.p.m. with unequal intensity (0.46:0.54). The signals of the vinyl protons in compound (II) are complicated and are virtually the mean of those of compounds (I) and (III).⁵

Since 2-methyl-2-azacyclononanone exists purely in the *cis*-form though inspection of models indicates that both *cis*- and *trans*-arrangements are possible,⁶ interconversion between the *cis*- and *trans*-isomers of the amide group in (I) and (II) should not occur. Therefore the splitting of the n.m.r. signals indicates that the methoxy-groups at C-9 and -10 are in a different magnetic environment caused by the hindered inversion of the nine-membered lactam ring (i \implies ii). The highfield signal can be ascribed to the shielding effect of the close approach of the anisotropic amide group to the methoxy-group. In fact, the intra-ring distance between C-3 and -9 is only 2.78 Å from X-ray analysis.⁴

Since in 2-methyl-2-azacylononanone not only no *trans*form exists but the methylene groups invert easily, it is very difficult to estimate kinetic parameters for twisting of the C-N bond in the amide group by the usual temperature dependent n.m.r. analysis. However in compounds (I) and (II), inspection of models indicates that twisting of the C-N bond may be essential for

⁴ O. Yonemitsu, H. Nakai, Y. Kanaoka, I. L. Karle, and B. Witkop, J. Amer. Chem. Soc., 1969, **91**, 4591; 1970, **92**, 5691. ring inversion, because C-1, -7, -10, and -11 are fixed in the bicyclic system.

On the other hand, in the N-acetyl compound (IV) ⁴ methoxy-groups at C-9 and -10 appear as a sharp singlet (6H), which is broadened at -60 °C. The signals of vinyl and methoxy-protons of other similar compounds are summarized in Table 1.

TABLE 1

Chemical	shifts	and	coupling	constants	in con	apounds
			(V)—(2	XI)		

Compound	Solvent	$\delta_{MeO}/(p.p.m.)$	$\delta_{\rm H}/({\rm p.p.m.})^{b}$
(V)	D_2O	3.63 (3H, s),	5.05 (2H, s)
	-	3·80 (3H, s)	
(VI)	D_2O	3·61 (s),	5.05 - 5.24 (1H), $5.66 -$
		3·79 (s),	6·27 (2H)
		(total 3H)	
(VII)	CDCl ₃	3·61 (3H, s)	4·88 (d, J _{8.11} 2·5 Hz, 8-H)
			5.77 (d, J _{10.11} 10 Hz, 10-H)
			5.97 (q, J 2.5, 10 Hz, 11-H)
(VIII)	CDCl ₃	3·63 (3H, s)	5·01 (d, J _{8.11} 2·5 Hz, 8-H)
			5.82 (d, J _{10.11} 10 Hz, 10-H)
			6.05 (q, J 2.5, 10 Hz, 11-H)
(IX)	CDCl ₃		5·98 (4H, s)
(X)	CDCl ₃		6.00 (4H, s)
(XI)	CDCl ₃		6.09 (s), 6.03 (d, J _{8.9} 11 Hz),
	-		6.28 (d, J 11 Hz) (total 4H)
	• MeO at	C-9 or -10.	Vinyl protons.

In order to explain these observations the n.m.r. total line-shape analysis method 1 was applied.

EXPERIMENTAL

Materials.— 7-Hydroxy-1,9,10-trimethoxy-4-azabicyclo-[5,2,2]undeca-8,10-dien-3-one (I) had m.p. 230—232°; ⁴ 7-hydroxy-1,9-dimethoxy-4-azabicyclo[5,2,2]undeca-8,10dien-3-one (II) had m.p. 210—213°; ⁵ and N-acetyl-7-hydroxy-1,9,10-trimethoxy-4-azabicyclo[5,2,2]undeca-8,10-dien-3-one (IV), had m.p. 188—189.5°.⁴

Variable Temperature Spectra.—Spectra were recorded with a Hitachi-R22 (90 MHz) n.m.r. spectrometer equipped with a variable temperature accessory. Temperatures are estimated to be accurate to $\pm 1^{\circ}$ or $\pm 2\%$.

Calculation of Theoretical Spectra.—The total line-shape equation of Gutowsky and Holm¹ for an uncoupled twosite exchange was programmed in FORTRAN IV. Calculations were performed on a FACOM 230—60 computer (Fujitsu Ltd.) using the following input data obtained from the observed spectra; transverse relaxation time (T_2) [(I), 0.4 s; (II), 0.4 s; (IV), 0.2 s], nonexchanging chemical shift (δv) [(I), $\delta v_A = 8.2$, $\delta v_B = -8.2$; (II), $\delta v_A = 8.15$, $\delta v_B = -8.15$; (IV), $\delta v_A = 4.5$, $\delta v_B = -4.5$ Hz], relative population (P_A and P_B). The spectra best fitted to those observed were obtained by least-squares refinement. The values of P_A and P_B , mean lifetime (τ), and mean rate constant (k) are summarized in Table 2.

RESULTS AND DISCUSSION

Compounds (I), (II), and (IV) were chosen for the n.m.r. total line-shape analysis. On raising the temtemperature, the doublet of the methoxy-groups at

⁵ O. Yonemitsu, H. Nakai, Y. Okuno, S. Naruto, K. Hemmi, and B. Witkop, *Photochem. Photobiol.*, 1972, **15**, 509; H. Nakai, K. Hemmi, and O. Yonemitsu, *Chem. Pharm. Bull. Japan*, 1972, **20**, 998.

^{20, 998.} ⁶ R. M. Moriarty, J. Org. Chem., 1964, 29, 2748; 1966, 31, 3007.

^a Both (I) and (II) are soluble only in water.

C-9 and -10 in compound (I) gradually collapses to a singlet with the coalescence temperature (T_c) being 97 °C. The usual Arrhenius plots ² (Figure 1) of these data gave the activation parameters as shown in Table 3.

FIGURE 1 Arrhenius plots for: \bigcirc , (I), \times , (II); \bigcirc , (IV)

TABLE 3

Coalescence temperature and activation parameters

		$E_{a}/$	$\Delta G^{\ddagger}/$	$\Delta S^{\ddagger}/$
Compound	T_{c} (°C)	kcal mol ⁻¹	kcal mol ⁻¹	cal K ⁻¹ mol ⁻¹
(I)	97	13.7	19.0	
(ÌÌ)	95	15.4	18.9	-9.5
(ÍV)	38	4.5	$12 \cdot 2$	-32.4

Compound (II) with methoxy-signals of different intensities was treated in the same way. The coalescence temperature and the activation parameters are also

⁷ R. C. Neuman, jun., and V. Jonas, J. Amer. Chem. Soc., 1968, 90, 1970.

shown in Table 3. Typical observed and computergenerated spectra are compared in Figure 2.

FIGURE 2 Observed (—) and calculated (\bigcirc) spectra of compound (II) at various temperatures. 1 Scale division = 2 Hz

These values, especially ΔG^{\ddagger} , are quite similar to those for the well known hindered rotation of amides, such as *NN*-dimethylacetamide.^{2,7} Since the amide group of compound (I) is almost planar (X-ray analysis⁴), the energy barrier for the inversion at the nitrogen atom is negligible.⁸ Therefore the slow ring-inversion is mainly caused by the hindered twisting of the C-N bond in the amide group because of its double-bond character. In fact the C-N bond length ⁴ is 1.318 Å, which indicates relatively high double-bond character.

Since N-acetylation of compound (I) to give compound (IV) reduces the bond order of the C-N bond and causes more rapid inversion of the nine-membered lactam ring, its n.m.r. spectrum for a CDCl₃ solution at room temperature shows the two methoxy-groups at C-9 and -10 and the vinyl protons at C-8 and -11 as sharp singlets at δ 3.65 and 4.95 p.p.m. respectively. Even at -60 °C, the methoxy-signal only broadens; however, the singlet of the vinyl protons splits into a doublet. The n.m.r. analysis was also applied in this case to give the activation parameters shown in Table 3. Even taking into account the solvent effect, the E_{a} value clearly indicates that the reduction of the bond order of the C-N bond gives rise to the rapid ring inversion. The relatively large value of ΔS^{\ddagger} in compound (IV) probably indicates that (IV) in its transition state exists in a more sterically hindered form.

These results provide the first example of hindered ring inversion of a medium-sized ring caused by hindered twisting of amide.

We thank Dr. Hanyu for n.m.r. measurements.

[2/671 Received, 21st March, 1972]

⁸ Cf., Y. Shvo, E. C. Taylor, K. Mislow, and M. Raban, J. Amer. Chem. Soc., 1967, 89, 4910.